
NASA-CR-2034@5 ,__j/j . o ,,

,/

The LAURA Experiment:

Adapting Code to Use The SSD on the Cray Y-MP
Teresa M. Griffie 1

Report RND-90-001, November 1990

N/ /X
National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035

ARC 275 (Roy Feb 81 )



The LAURA Experiment:

Adapting Code to Use The SSD on the Cray Y-MP

Teresa M. Griffie 1

Report RND-90-001, November 1990

NAS Systems Division

NASA Ames Research Center

Mail Stop 258-6

Moffett Field, CA 94035-1000

1 Computer Sciences Corporation, NASA Contract NAS 2-12961, Moffett Field, CA 94035-1000



The LAURA Experiment:
Adapting Code to Use The SSD on the Cray Y-MP

Teresa M. Griffie

Report RND-90-001, November 1990

Numerical Aerodynamic Simulation Division

NASA Ames Research Center

The Fortran program LAURA was modified to reduce use of

the Cray Y-MP's main memory during execution by sending

arrays to the machine's solid-state storage device. A

measurable decrease in executable size resulted from this

modest recoding, suggesting that programs currently too

large to fit into existing run queues might be altered slightly

to reduce their in-core memory requirements. A method was

developed for identifying arrays which would be most

appropriate for recoding.

I. Introduction

Some scientists with large codes may be unable to take advantage of the speed of

the Cray Y-MP because its nan queues are too small to accommodate their

programs. In order to address this situation, various techniques for reducing in-core

memory use were investigated. In this experiment, we modified Peter Gnoffo's

LAURA (Langley Aerothermodynamic Upwind Relaxation Algorithm) program to

evaluate the benefits of reducing executable size by utilizing the Cray Y-MP solid-

state storage device (SSD). The SSD is the Cray's high-speed DRAM-based

auxiliary memory, offering transfer rates around 1 Gbit/sec. It is significantly

faster than disk I/O or Cray-2 main memory. Executable size was reduced by

storing arrays in the SSD and retrieving or rewriting them in small sections, so that

less main memory is used during program execution..

LAURA, which calculates hypersonic and thermal flow around a body, was

selected for this experiment because it employs large 3- and 4-dimensional arrays

that can be stored in the SSD. Most of these arrays, as well as the DO-loops and

conditional statements, rely on three parameters which are set within the program

itself: IQ, JQ, and KQ.



• IQ is thenumberof cellsfrom theaxisto theboundaryof thebody. Its
minimumvalueis 10.

° JQis thecircumferenceindex,anddeterminesthenumberof degreesin a
hemispherefor eachcell. Forexample,10° for eachcell meansJQis 18.

• KQ is theshockindex,thenumberof ceilsinto thefreestream.Its
minimumvalueis 16.

Thesevaluesgovernthesizeof thecalculationgrid, andhencetheexecutablesize
of theprogram.In theprogram'sinitial form, IQ wasequalto 30,JQwasequalto
12,andKQ wasequalto 32.

II. Approach

We selected the method for buffering data to the SSD by examining how the arrays

would be accessed during program execution. In particular, we noted the order in

which data would be required, and the fact that I/O requests to the SSD must be

sent in segments of 1 block (512 words). These two criteria determined the size of

the 2-dimensional array in memory as well as how I/O to the SSD would be

handled for calculations within loops. Since many of the outer loops use KQ, data

files stored in the SSD were composed of KQdifferent 2-dimensional arrays,

arranged as they would have been in regular memory. In addition, the 2-

dimensional array size had to be an integral multiple of 512 to accommodate the

SSD I/O requirements.

Here is an example of the translation from original code to new code:

Original code:

10

PARAMETER (IQ--30, JQ=I2, KQ=32)

COMMON/BLKA/A (IQ, JQ, KQ), B (IQ, JQ, KQ)

DO i0 K=I,KQ

DO I0 J=I,JQ

DO i0 I--I,IQ

A (I, J, K) =AINIT

B (I, J, K)--VOL*A (I, J, K) +VINIT

CONTINUE



New code:

10

2O

PARAMETER (IQ=30, JQ=I2, KQ=32 )

DIMENSION ARR(32,16),BRR(32,16)

DO 20 K=I,KQ

DO I0 J=I,JQ

DO i0 I=I, IQ

ARR (I, J) =AINIT

BRR (I, J) =VOL*ARR (I, J) +VINIT

CONTINUE

CALL GETARR(I,ARR, 32,16,K, 0)

CALL GETARR (2,BRR, 32, 16, K, 0)

CONTINUE

SUBROUTINE GETARR (IUNIT, ARRR, I, J, K, IRW)

DIMENSION ARRR(I,J)

INDEX=I* J* (K-l)

CALL SETPOS (IUNIT, INDEX)

IF (IRW.EQ.I)BUFFER IN (IUNIT, I) (ARRR(I,I),ARRR(I,J))

IF (IRW.EQ.0)BUFFER OUT (IUNIT, I)(ARRR(I,I),ARRR(I,J))

RETURN

END

The key feature of the new code is the subroutine GETARR. This routine positions

the data file at the appropriate location using SETPOS on file IUNIT. It then

performs a read or a write on the file, depending on flag IRW, using unformatted

I/O with BUFFER IN and BUFFER OUT.

3



III. Results

Initially 40 arrays of the form ACIQ,JQ,KQ) were chosen to be written to the SSD.

Over the course of several trials, we observed a marked decrease in the in-core

memory use (e.g., 96 MW to 69 MW in one case). However, at the same time, the

CPU time used increased significantly due to large amounts of SSD I/O. For

example, with the parameters IQ - 24, JQ = 12, and KQ = 32, forty iterations of

the modified LAURA code used 150.18 user CPU seconds and 364.23 system

CPU seconds. This was in contrast to the 26.68 user CPU seconds and 0.41

system CPU seconds clocked by the original version. The large CPU overhead

associated with this technique led us to further refine our methods to achieve a

better balance between memory use and CPU use.

First, we examined several other arrays which represented a major portion of the in-

core memory usage. These arrays have the form ARR(IQ*JQ,4,2). Unfortunately,

they were used in different ways than the A(IQ,JQ,KQ) arrays, and so were not

good candidates for the GETARR subroutine. Next, we analyzed in-line functions

to see if they would be more appropriate for these arrays, but the additional amount

of I/O required would offset any memory reduction. One army, however, was

found to fit into both the above group and the original group: It has the form

ARR(IQ*JQ,16,16,KQ). We wrote a new subroutine GETRRR, which is similar

to GETARR, for this army.

By altering this one array, substantial memory reductions were achieved, even for

modest values of IQ, JQ, and KQ. For the same example, (IQ=24, JQ=12,

KQ=32), code size went from 5.21 MW with original code to 3.00 MW with new

code, yielding a 42% memory reduction. Keeping the same IQ and JQ, memory

requirements were reduced by 53% for KQ = 64, and 60% for KQ = 128.

Tables 1, 2, and 3 list the results for different sizes and parameters. Figures 1, 2,

and 3 show selected results graphically.



IQJQ

24 12

24 18

24 24

New size.

inMW

3.00

4.17

5.33

Origina 
size in MW

5.21

7.48

9.75

Percentage

Decrease in

memory

42

44

45

24 36 7.67 14.30 46

6.36

9.19

30 12

30 18

3.60

5.05

43

45

New time,

user &

system

(in seconds)

28.87

1.26

40.61

1.64

51.98

2.62

Original
time, user

& system

(in seconds)

28.68

0.41

40.50

0.31

51.86

0.47

76.09 75.79

2.80 0.45

34.45

1.57

49.13

1.97

34.28

0.62

48.72

0.56

30 24 6.50 12.03 46 63.61 63.41

3.09 0.50

30 36 9.40 17.69 47 92.95 91.75

3.46 0.56

40 12 4.59 8.28 45 43.91 43.84

1.94 0.54

40 18 6.52 12.05 46

15.818.4440 24

12.30

6.58

9.46

12.33

18.09

23.35

47

47

46

47

47

48

40 36

60 12

60 18

60 24

60 36

Table 1. Corn

63.19

3.60

81.73

3.39

120.28

4.65

62.78

2.43

90.59

3.25

119.31

4.01

175.30

7.79

12.11

17.75

23.39

34.67

_arison of in-core memory

iterations for KQ= 32.

63.03

0.64

81.32

0.52

90.28

1.19

119.66

1.33

175.10

1.87

:izes and user and system time for 40

62.71

0.84

119.84

1.44



IQ JQ New size.
inMW

Original
size in MW

Percentage

Decrease in

memory

New time,

user &

system

(in seconds'_

Origina 
time. user

& system

(in seconds)

24 12 4.08 8.65 53 28.85 28.88

1.56 0.28

24 18 5.77 12.62 54

16.60

24.55

7.46 55

5610.84

24 24

24 36

30 12 4.96 10.65 54

30 18 15.61

20.57

30.49

7.04

9.15

13.36

55

56

56

30 24

40.59

2.64

52.13

2.67

76.36

3.94

34.42

1.91

48.96

2.56

63.69

3.05

92.13

4.14

30 36

40.46

0.97

51.90

1.11

75.79

2.43

34.32

0.34

48.78

0.84

63.44

1.61

92.40

1.95

40 12 6.38 13.99 54 43.93 43.77

2.81 1.64

40 18 9.17 20.60 55 63.22 63.00

3.41 0.79

40 24 11.97 27.20 56

40.40 57

81.80

4.34

120.51

5.31

40 36 17.55

81.37

1.75

119.74

2.68

60 12 9.25 20.68 55 62.90 62.55

3.09 1.40

60 18 13.42 30.57 56 90.85

4.10

17.60 40.45

60.2225.94

56

57

60 24

60 36

119.36

5.80

176.37

8.40

90.13

2.33

118.13

2.76

173.45

2.05

Table 2. Comparison of in-core memory sizes and user and system time for 40

iterations for KQ = 64

6



IQJQ

24 12

New size.

inMW

6.24

Original
size in MW

15.52

Percentage

Decrease in

memory

60

New time,

user &

system

(in seconds3

28.84

1.64

Original
time. user

& system

(in seconds;

28.61

0.83

24 18 8.97 22.91 61 40.62 40.44

2.23 1.21

24 24 11.71 30.29 61

24 36 17.18 45.05

30 12 7.63 19.24

30 18 11.04 28.45

30 24 14.45 37.67

21.2630 36

40 12 9.95

14.48

56.09

25.43

37.70

50.00

74.51

37.81

56.19

19.01

28.06

62

60

52.16

2.58

76.42

4.42

34.47

2.35

61 49.02

2.48

62 63.74

3.04

62

61

62

62

!4.59

21.36

62

61

62

92.63

6.33

43.93

2.15

63.33

2.98

82.14

3.16

121.09

6.82

62.95

3.12

90.93

4.82

40 18

40 24

40 36

60 12

60 18

60 24 28.13 74.57 62 119.74

6.02

60 36 41.66 111.33 63

* Executable too large to run on Reynolds

176.76

12.73

52.07

1.21

75.71

1.87

34.34

1.04

48.79

0.90

63.53

1.49

92.10

2.48

43.66

0.87

62.99

1.35

81.55

1.26

62.54

1.21

90.29

1.72

Table 3. Comparison of in-core memory sizes and user and system time for 40

iterations for KQ = 128



MW

120

IO0

8O

60

4O

20

0

Figure 1.

run arrays on the SSD.

Comparison Of In-Core Memory Sizes

[] Old

• New

KQ 32 KQ 64 KQ 128

Comparison of In-Core memory size before and after re-writing code to

In this test data set, IQ=60 and JQ= 36.

Comparison of System Time

15

Soeoo_
10

5

0 I
KQ 32 KQ 64 KQ 128

mOld

• New

(Old KQ 128 was too big to run on Reynolds)

Figure 2. Comparison of system time before and after re-writing code to run arrays

on the SSD. In this test data set, IQ=60 and JQ=36.



200

Comparison of User Time

Seconds

150

100

50

m Old

• New

KQ 32 KQ 64 KQ 128

(Old KQ 128 was too big to run on Reynolds)

Figure 2. Comparison of user time before and after re-writing code to run arrays

on the SSD. In this test data set, IQ=60 and JQ=36.

IV. Size differences

We used the/bin/size utility resident on the Cray Y-MP to determine and compare

actual executable sizes because some of the original programs sizes were greater

than the largest queue sizes currently available on the machine. The/bin/size utility

yields a size which, on the average, is only 1% less than the actual runtime size of

the code.

Tables I, II, and M, shown earlier, compare memory size and performance

between the original and modified versions of LAURA over various values of the

three parameters spanning the domain representing actual physical problems.

The different values of the parameters were:

IQ = 24, 30, 40, and 60

JQ = 12, 18, 24, and 36

KQ = 32, 64, and 128.

It was found that the memory size differences between original and new versions of

LAURA for each test case directly related to the size of KQ relative to the other

parameters. When KQ is much larger than IQ and JQ, memory reduction is much

greater than when KQ is approximately the same as IQ or JQ. This occurs because

memory required by the original array is decreased by an amount proportional to

KQ when writing KQ new arrays out to the SSD.



V. Runtime differences

The major differenceinrun time willbc insystem CPU time,duc toSSD I/O.

How much CPU tirncthe system actuallyspends readingand writingtothe SSD is

directlyproportionaltoKQ, and tothe number ofreadsand writesintheactual

code,which islow. In thiscase,sinceonly one arrayisbeing storedin theSSD,

thedifferenceintotalCPU timeissmall.The slightdifferenceinuserCPU time is

duc tosubroutinecallstoGETRRR inthenew version.The differenceinsystem

CPU tirncisduc tothe system settingup datau'ansfcrtotheSSD; thisinvolves

many differentfunctionsand isinfluencedby such factorsas thecurrentjob load,

nurnbcrof swapped jobs,cache status,etc.Although severaltestswcrc run for

variousamounts of datatoestablishI]O ratestotheSSD, itwas notpossibleto

quantitativelydeterminehow dependent theSSD I/O overhead ison thedifferent

parameterswhich affectit.This issueshouldbc thesubjectof futurestudies.

I0


